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Part A CFRD - loading mechanism of BSM
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Part A CFRD - Adaptive multi-step backward
Euler’s integration procedure with local iteration
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Part A CFRD - An incrementally-iterative
algorithm of 3D nonlinear systems
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Part A CFRD - Static and dynamic response

Contours of stresses on slab for reservoir
filling (MPa)

The three-dimensional finite element
discretization of a CFRD dam (182m high)

Contours of peak absolute acceleration
of slab (g)



Part B SADSS Limit state equation
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Part B SADSS---Various evaluation index
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Part B SADSS Distribution of indexes
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Part B SADSS --- Probabillistic optimum design
L, J




Part C CLIEACH Stages of retrogression

i } CLIEACH

Continual wave action transport the debris
offshore. The cliff base is again exposed to
waves to suffer erosion >>> Centrifuge test




Part C CLIEACH Move of sliding solil block
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~—— Assumes that a slice with mass M starts
to move from A, pass by B, and moves to
point C as a result of the sliding
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neglect deformation characteristics during the mgvi

Two phases: AB is the transferring phase of paaéptiergy to kinetic energy
overcome friction, accelerating motion while BGhs exchange phase of kinetic
energy overcome the friction.



Part C CLIEACH Governing eguation

Energy conservation equation

avhH; - g iitanfa :lgwihivé

tana 29
%Qwi h[v,cos@- b)]°+guhL tanb=gnvhL tanf,
g
Run out distance of the sliced block

L= H cos’ (a - b) tana - tanf,
"' tana tanf, - tanb

The height of lying of slid mass (Distribution honsmise)

(LT gWh)
_ = Dh=V./L




Part D SDEM Brownian motion

Brownian motion (Viener proces¥in three-dimensional
space (one sample path shown) is an example aflan |
diffusion. (from Wikipedia)

Langevin equation is a SDE in statistic physic
describing Brownian motion

dy, dB
—L=u(t,y,)+s(ty,)—
m t,y,)+s(ty,) m

W, = d%t Wt is wiener process

Which is the random movement of
particles suspended in a fluid or the
mathematical model used to describe such
random movements, often called a
[partical theory].



Part D SDEM Idea comes from stock market

The mathematical model of Brownian motion has ssvesal-
world applications. hydraulic, environmental, anoldygical
fields An often quoted examplessock markefluctuations

FTSE 100

Nasdaq \ o
stock price§ follows Black-Scholes model

dS = nSdt + sSdw,

S is the stock/@latility , 77 is the
stock . and Bt is a Brownian o
motion. Wt IS wiener{arocess




Part D SDEM One contour line model

Only longshore transport component considered asiloution
The general equation for the deterministic process
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Part D SDEM Stochastic one-line model

Substitute one-line model to random differentialaopn, then

a random process model of shoreline positiocan be given

f(y,t):1—16r 9°*%g*?a,(sin2a, " - sin2a,')/(Dxd,)

dygtct) = F(y,)K,, +G(y,hW(t)
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It is known that system described by equation () a transition PDF
(Soong, 1973; Gardiner, 2004 ), satisfiesRbkker-Planck equation
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determining the PDF IS transformed into solving\abPDE




Part D SDEM PDF in 3D space at 80th cell

Fig. 7a PDF surface varying with time at cell 8q:ig. 7b The coutours of PDE at 80th

Seems like water flowing in a river with a gradisiipe. The flow in the “river”
IS not stationary, initially no change due to npakgtion at the beginning then
drift constantly over time



Part D SDEM Analytical solution on Fokker-Planck

For a special transect X=X,
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we should like to explain its derivative with respt time
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This transformation of the shoreline change rate spiecified position, seems
to escalate the complexity of the problem dramiyicactually this
expression is expected to exhibit more interegtmogerties in the follow
stochastic model

Tp(y. 1) _

T T Ie
e L0 ke [v2(t) p]

At a specified position, a more promising and akive exact solution can be

solved by Lie-Algebra approach (Desai and Zwank8y,8; Lo, 2005) for this
time-dependent

Fokker-Planck equation



Part D SDEM Analytical solution on Fokker-Planck

We may define the evolution operator
p(y,t) =U (t) p(y0)
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Part D SDEM Liouville shoreline evolution model

Substitute one-line model to random differential&opn, then a random
process model of shoreline position can be given

1 . i- . i
Z(y,t) T r.,0¥%a,(sin2a,"* - sin2a,') /(Dx)
In order to employ Liouville model Which can be nefaulated as

t)
dZ(x,t) Z(x,t) = y(x, h

Z(x,0) = Z, h(y,t) =H,z(y.1) !




Part D SDEM Liouville Shoreline Evolution
model
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The probability density flow does not have sourcesans
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17(y,t)/y=0 (Shvidler and Karasaki, 2003)

Density functiop(y,t
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Eqg. (20) can be simplified by a one-dimensionaleaton

n, 1
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ﬂpYHW (y, hW ,t) -0 Offshore distance (m)

Y(h,,t) =9A(y,t)/Ty is the ‘velocity’ of the response for a prescribed

which means shoreline travels by this velocity

Py (Y, h,,t)  Joint PDF is numerically solvable
Flux limiter imposed by a total variation diminislgi (TVD) (Harten, 1983;
Sweby, 1985)
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